510 Chapter 12. Fast Fourier Transform

integer arithmetic modulo some large primé+1, and theNth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these areFootier transforms

at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]
Bloomfield, P. 1976, Fourier Analysis of Time Series — An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.ILAM.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14-21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-value
samplesf;, j = 0...N — 1. To usefourl, we put these into a complex array
with all imaginary parts set to zero. The resulting transféfm n =0... N — 1
satisfiesFy_,,* = F,. Since this complex-valued array has real valuesHgr
andFy /5, and(NN/2) — 1 other independent valuds, . .. Fyy/2_+, it has the same
2(N/2 — 1)+ 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There aregwo better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the progsashft below.

This may remind you of a one-cent sale, at which you are coerced to purchas
two of an item when you only need one. However, remember that for correlation
and convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then

performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the progmssalft below.

SINOYAD 10 s)00q sadioay [eauswnp Japlo o] ‘panuqgiyoid Apowis si ‘4emndwod 1anias Aue 01 (auo siyl Buipnjour) sajiy ajgqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

WR1i0N apisIno) B0 aBpLGUIEd@AISSISNASSAIP 0] [leWa PuUss o ‘(AJU0 ©ILIBWY YLON) E2i/-2/8-008-T 182 40 Wod"Iu mmmy/:dny

ISIA

usw

D »
(eo

alsgem)

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

12.3 FFT of Real Functions, Sine and Cosine Transforms 511

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transfoffp to handle
two real functions at once: Since the input dgtaare real, the components of the
discrete Fourier transform satisfy

Fnon = (F,)* (12.3.9 %é
where the asterisk denotes complex conjugation. By the same token, the discret§
Fourier transform of a purely imaginary setgfs has the opposite symmetry. 3

8
GN_n=—(Gp)* (12.3.2 o
o
o
&

=)

el

Therefore we can take the discrete Fourier transform of two real functions each o
length N simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array ofir1. Thenthe resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routinetwofft works out these ideas.

)

yLoN

void twofft(float datal[], float data2[], float ffti[], float fft2[],

unsigned long n)
Given two real input arrays datal[1..n] and data2[1..n], this routine calls fourl and
returns two complex output arrays, fft1[1..2n] and £ft2[1..2n], each of complex length
n (i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data

arrays. n MUST be an integer power of 2.

{

void fourl(float datal], unsigned long nn, int isign);

unsigned long nn3,nn2,jj,j;
float rep,rem,aip,aim;

nn3=1+(nn2=2+n+n) ;

for (j=1,jj=2;j<=n;j++,jj+=2) {
fftl [jj—l] =datal [j] ;
fft1[jjl=data2[jl;

fourl(ffti,n,1);

fft2[1]=fft1[2];

fft1[2]=f£ft2[2]=0.0;

for (j=3;j<=n+1;j+=2) {
rep=0.5%(£ft1[jI+£ft1[nn2-j1);
rem=0.5%(£ft1[jI-fft1[nn2-j1);
aip=0.5*(£ft1[j+1]+fft1[nn3-j1);
aim=0.5*(£ft1[j+1]-fft1[nn3-31);
ffti[jl=rep;
fft1[j+1]=aim;
fft1[nn2-jl=rep;
fft1[nn3-j] = -aim;
fft2[jl=aip;
fft2[j+1] = -rem;
f£t2[nn2-jl=aip;
fft2[nn3-jl=rem;

Pack the two real arrays into one com-
plex array.

Transform the complex array.

Use symmetries to separate the two trans-
forms.

Ship them out in two complex arrays.

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauswy
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

512 Chapter 12. Fast Fourier Transform

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plustimes the second. Invert usimpur1 with
isign = —1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

00" JU"MMAY/:dnYy

To implement the second method, which allows us to perform the FFT of 3
a single real function without redundancy, we split the data set in half, thereby 2
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will &
be a schizophrenic combination of two transforms, each of which has half of the %
information we need. Fortunately, this schizophrenia is treatable. It works like this: i

The right way to split the original data is to take the even-numbgreds
one data set, and the odd-numbefgdas the other. The beauty of this is that
we can take the original real array and treat it as a complex d@rragf half the
length. The first data set is the real part of this array, and the second is th
imaginary part, as prescribed fewofft. No repacking is required. In other words
hj = faj+ifoj+1, J=0,...,N/2—1. We submit this tfour1, and it will give
back a complex arrayd,, = F +iF?,, n=0,...,N/2—1 with

N/2-1
Fri — Z ka eQTrikn/(N/Q)

k=0
s (12.33

F;; — Z f2k+1 eQﬁikn/(N/2)
k=0

The discussion of programwofft tells you how to separate the two transforms
Ef andF? out of H,,. How do you work them into the transforf, of the original
data setf;? Simply glance back at equation (12.2.3):

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

F,=F¢4e™m/Npe p=0,...,N—1 (12.3.4

Expressed directly in terms of the transforfh, of our real (masquerading as
complex) data set, the result is

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(Hy — Hyjop*)e*™ N n=0,...,N—1
(12.3.5

1 7
Fp = =(Hy + Hyjon*) —
2(+ Hyjo—n™) 5

‘(eauBWY YUON apisino) Bio abpuqued@AIasisnoloalip 0] [lewa puss o ‘(Ajuo eouéﬁjv YLON) £2¥/
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

A few remarks:

e SinceFn_,* = F, there is no point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

e Even so, we need valud$,, n = 0,..., N/2 whereasfour1 gives only
the values: = 0,..., N/2 — 1. Symmetry to the rescué] /» = Ho.

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

e The valuesF; and F'y/, are real and independent. In order to actually
get the entirel’,, in the original array space, it is convenient to U,
into the imaginary part of.

e Despite its complicated form, the process above is invertible. First peel
Fy/o out of Fy. Then construct

.1)

n=0,...,N/2-1 (12.3.6

1 . *
Fy = 56_2ﬂm/N(Fn —Fyjon)

and usefourl to find the inverse transform off,, = F,(Ll) + z'F,(f).
Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

#include <math.h>

void realft(float datal], unsigned long n, int isign)
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data (which
is stored in array datal[1..n]) by the positive frequency half of its complex Fourier transform.
The real-valued first and last components of the complex transform are returned as elements
datal[1] and datal[2], respectively. n must be a power of 2. This routine also calculates the
inverse transform of a complex data array if it is the transform of real data. (Result in this case
must be multiplied by 2/n.)
{
void fourl(float data[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
float c1=0.5,c2,hlr,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta; Double precision for the trigonomet-
ric recurrences.
theta=3.141592653589793/ (double) (n>>1); Initialize the recurrence.

if (isign == 1) {

c2 = -0.5;
fouri(data,n>>1,1); The forward transform is here.
} else {
c2=0.5; Otherwise set up for an inverse trans-
theta = -theta; form.

}

wtemp=sin(0.5%theta);

wpr = -2.0*wtemp*wtemp;

wpi=sin(theta);

wr=1.0+wpr;

wi=wpi;

np3=n+3;

for (i=2;i<=(n>>2);i++) {
i4=1+(i3=np3-(i2=1+(il=i+i-1)));
hir=cix(datal[il]+datal[i3]);
hili=cix(datal[i2]-datal[i4]);
h2r = -c2x(datal[i2]+datali4]);

Case i=1 done separately below.

The two separate transforms are sep-
arated out of data.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

h2i=c2*(datal[il]-datal[i3]);
data[il]=hlr+wr*h2r-wi*h2i;
data[i2]=hli+wr*h2i+wi*h2r;
data[i3]=hlr-wr*h2r+wi*h2i;

data[i4] = -hli+wr*h2i+wixh2r;

wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}

if (isign == 1) {

Here they are recombined to form
the true transform of the origi-
nal real data.

The recurrence.

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

514 Chapter 12. Fast Fourier Transform

data[1] = (hir=data[1])+datal2]; Squeeze the first and last data to-
data[2] = hilr-datal2]; gether to get them all within the
} else { original array.

data[1]l=c1*((hlr=datal[1])+datal[2]);

data[2]=c1*(hir-datal2]);

fourl(data,n>>1,-1); This is the inverse transform for the
} case isign=-1.

Fast Sine and Cosine Transforms

B woorurmmmy/:dny

pauqiyold Apos si ‘19Indwod 1aAias Aue 01 (suo siyy Buipnoul) saji a|qepeal

Among their other uses, the Fourier transforms of functions can be used to solv
differential equations (se¢19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivative
are zero at the boundaries. In the first instance, the natural transform to use is th
sine transform, given by

&7 eo

gm0

N—-1
F, = Z fisin(mjk/N) sine transform (12.3.9

j=1

wheref;, j =0,...,N — 1 is the data array, anfl, = 0.

At first blush this appears to be simply the imaginary part of the discrete Fourier
transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform s only as a complete set
of functions in the interval frond to 27, and, as we shall see, the cosine transform
usescosines only. By contrast, the normal FFT uses both sines and cosines, but only 2
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them a
odd function aboutj = N, with fy = 0,

(Ajuo eouBWY YUON) £2v.-2L

SN91081IP 0] [IeWS PUas 10

fon—j=—f; j=0,...,N—1 (12.3.9

Consider the FFT of this extended function:

2N—-1 y
Fp= Y fie?™ik/N) (12.3.9

Jj=0

The half of this sum fromj = N to j = 2N — 1 can be rewritten with the
substitutionj’ = 2N — j

“(eousWy YLON apisino) Bio*abpLgues @AIes)
21ISaM ISIA ‘'SINOYAD 10 $00q sadioay [eouawinN Japlo 01

2N—1 N
Z fj€27rijk/(2N) _ Z fQN,j/GQ’”(QN*J")k/@N)
j=N Jj'=1

Vot (12.3.10
- Z fj/6727rij’k/(2N)

5'=0

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

12.3 FFT of Real Functions, Sine and Cosine Transforms 515

+1 1
4 W\/
@ o
5
_1 3
+1 3 2 1
() o
4
5
-1
+1 1
2
3
© o
4
-1 5
0 21

Figure 12.3.1. Basisfunctions used by the Fourier transform (a), sine transform (b), and cosine transform
(c), are plotted. Thefirst five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

0 that

Fy

[62m'jk/(2N) _ 6727rijk/(2N)}

(12.3.11)

N—-1
S fi
§=0
N-—-1
2y f;sin(mjk/N)
=0
Thus, upto afactor 2; weget thesinetransform fromthe FFT of the extended function.
This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especialy in view of the smplicity
of the method. When we work with partial differential equations in two or three

dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

516 Chapter 12. Fast Fourier Transform

From the original real dataarray f; we will construct an auxiliary array y; and
apply to it the routinerealft. The output will then be used to construct the desired
transform. For thesinetransformof data f;, j = 1,..., N — 1, theauxiliary array is

Yo =0
. (12.3.12)
yj =sin(imn/N)(f; + fn—j) + §(fj —fv—j) Jj=1,...,N-1

This array is of the same dimension as the original. Notice that the first term is
symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft isappliedtoy;, theresult hasreal parts R, and imaginary parts I, given by

N-1
Ry, = y; cos(2mjk/N)
Jj=0
N-1
= D (fi+ fn—j)sin(jm/N) cos(2mjk/N)
Jj=1
N-1
= 2f;sin(jm/N) cos(2mjk/N)
7=0
N-1 . .
. 2k+Djr . (2k—1)jrw
= 2 £ {sm N — sin N
= Forp1 — Fop—1 (12.3.13)
N-1
I = y; sin(2mjk/N)
Jj=0
N-1 1
= 2_(fi = fx—y)5 sin(2mjk/N)
j=1
N-1
= fjsin(2mjk/N)
=0
= Py (12.3.14)

Therefore F), can be determined as follows:
For =1, For+1 = Forp—1 + Ry k= 0,...,(N/2— 1) (12.3.15)
The even terms of Fj are thus determined very directly. The odd terms require

a recursion, the starting point of which follows from setting £ = 0 in equation
(12.3.15) and using F;, = —F_:

F = %Ro (12.3.16)

The implementing program is

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

12.3 FFT of Real Functions, Sine and Cosine Transforms 517

#include <math.h>

void sinft(float y[], int n)

Calculates the sine transform of a set of n real-valued data points stored in array y[1..n].
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

{

void realft(float datal], unsigned long n, int isign);

int j,n2=n+2;

float sum,yl,y2;

double theta,wi=0.0,wr=1.0,wpi,wpr,wtemp; Double precision in the trigono-

metric recurrences.

theta=3.14159265358979/ (double) n; Initialize the recurrence.

wtemp=sin(0.5%theta);

wpr = -2.0*wtemp*wtemp;

wpi=sin(theta);

y[11=0.0;

for (j=2;j<=(n>>1)+1;j++) {
wr=(wtemp=wr) *wpr-wi*wpi+wr; Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi; The cosine is needed to continue the recurrence.
yi=wi*(y[j1+y[n2-j1); Construct the auxiliary array.
y2=0.5%(y[j1-y[n2-j1);
y[j1=y1+y2; Terms j and N — j are related.
y[n2-jl=y1-y2;

}

realft(y,n,1); Transform the auxiliary array.

y[1]1%=0.5; Initialize the sum used for odd terms below.

sum=y [2]=0.0;

for (j=1;j<=n-1;j+=2) {
sum += y[j];
y[jl=y[j+1]; Even terms determined directly.
y[j+1]=sum; Odd terms determined by this running sum.

}

The sine transform, curioudly, isits own inverse. If you apply it twice, you get the
original data, but multiplied by a factor of N/2.

The other common boundary condition for differential equations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of doublethe length, and/or from whether the extended array
contains 2N — 1, 2NN, or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselvesto just these two.

The first form of the cosine transform uses N + 1 data points:

N-—1
Fe= %[fo + (=D N+ Y fjcos(mik/N) (12.3.17)

j=1
It results from extending the given array to an even array about j = N, with
Jan—j = [}, j=0,...,N—1 (12.3.18)

If you substitute this extended array into equation (12.3.9), and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transformis

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

518 Chapter 12. Fast Fourier Transform

just twice the cosinetransform (12.3.17). Another way of thinking about the formula
(12.3.17) isto noticethat it is the Chebyshev Gauss-L obatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

1 .)
Yj = §(fj + fn—j) —sin(in/N)(f; — fn=j) j=0,...,N—1 (123.19)
Instead of equation (12.3.15), realft now gives
For. = Ry, Forv1 = Fop—1 + I, k=0,..., (N/Q - 1) (12320)

The starting value for the recursion for odd £ in this case is

N—-1
Fi= 5o~)+ 3 i cos(jm/N) (12321)

j=1

This sum does not appear naturally among the R, and I, and so we accumulate it
during the generéation of the array y ;.

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has NV + 1 input and output values, it passes an array only
of length N to realft.

#include <math.h>
#define PI 3.141592653589793

void cosfti(float y[], int n)
Calculates the cosine transform of a set y[1. .n+1] of real-valued data points. The transformed
data replace the original data in array y. n must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array should
be multiplied by 2/n.
{

void realft(float datal], unsigned long n, int isign);

int j,n2;

float sum,yl,y2;

double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;

Double precision for the trigonometric recurrences.

theta=PI/n; Initialize the recurrence.
wtemp=sin(0.5*theta) ;

wpr = -2.0*wtemp*wtemp;

wpi=sin(theta);

sum=0.5*(y[1]-y[n+1]);

y[11=0.5%(y[1]1+y[n+1]1);

n2=n+2;

for (j=2;j<=(n>>1);j++) { j=n/2+1 unnecessary since y [n/2+1] unchanged.
wr=(wtemp=wr) *wpr-wi*wpi+wr; Carry out the recurrence.
wi=wixwpr+wtemp*wpi+wi;
y1=0.5x(y[j1+y[n2-3j1); Calculate the auxiliary function.
y2=(y[j1-y[n2-j1);
y[j1=y1-wixy2; The values for j and N — j are related.
y[n2-jl=y1+wi*y2;
sum += wrkxy2; Carry along this sum for later use in unfold-

} ing the transform.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

12.3 FFT of Real Functions, Sine and Cosine Transforms 519

realft(y,n,1); Calculate the transform of the auxiliary func-
y[n+1]l=y[2]; tion.
y[2]=sum; sum is the value of F in equation (12.3.21).
for (j=4;j<=n;j+=2) {
sum += y[jl; Equation (12.3.20).
y[jl=sum;
}
}
The second important form of the cosine transform is defined by
N—-1 . 1
Tk(j + 3)
= cog ——22 12.3.22
k Z f] N ()
7=0
with inverse
N-1
2 Tk(j + %)
= — F), cos ——2~ 12.3.23
[N];) k N ()

Here the prime on the summation symbol means that the term for £ = 0 has a
coefficient of % in front. This form arises by extending the given data, defined for
j=0,...,N—1,toj = N,...,2N —1insuchaway that it is even about the point
N — 1 and periodic. (1t is therefore also even about j = — £.) The form (12.3.23)
is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

m(j+3)

v i = Ineg) G=0, N =1

(12.3.24)

1 .
y; = i(fj + fn—j—1) +sin

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), wefind

k k
Fyj, = cos %Rk — sin %Ik (12.3.25)
. wk 7k
Fy_1 = sin WRk —+ cos Wfk + Fort1 (12326)
Note that equation (12.3.26) gives
1

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from & = N/2 — 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps to
find the inverse. Here is the routine:

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

520 Chapter 12. Fast Fourier Transform

#include <math.h>
#define PI 3.141592653589793

void cosft2(float y[], int n, int isign)
Calculates the “staggered” cosine transform of a set y[1..n] of real-valued data points. The
transformed data replace the original data in array y. n must be a power of 2. Set isign to
+1 for a transform, and to —1 for an inverse transform. For an inverse transform, the output
array should be multiplied by 2/n.
{

void realft(float datal], unsigned long n, int isign);

int i;

float sum,suml,yl,y2,ytemp;

double theta,wi=0.0,wil,wpi,wpr,wr=1.0,wrl,wtemp;

Double precision for the trigonometric recurrences.

theta=0.5%PI/n; Initialize the recurrences.
wrl=cos(theta);

wil=sin(theta);

wpr = -2.0*%wil*wil;

wpi=sin(2.0*theta);

if (isign == 1) { Forward transform.
for (i=1;i<=n/2;i++) {
y1=0.5%(y[il+y[n-i+11); Calculate the auxiliary function.
y2=wil*(y[i]l-y[n-i+1]);
yl[il=y1+y2;
y[n-i+1]=y1-y2;
wrl=(wtemp=wrl)*wpr-wil*wpi+wri; Carry out the recurrence.
wil=wil*wpr+wtemp*wpi+wil;
}
realft(y,n,1); Transform the auxiliary function.
for (i=3;i<=n;i+=2) { Even terms.
wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
yl=y[il*wr-y[i+1]*wi;
y2=y [i+1]*wr+y[1]*wi;
y[il=y1;
y[i+1]=y2;
}
sum=0.5*y[2] ; Initialize recurrence for odd terms
for (i=n;i>=2;i-=2) { with 3Ry /2.
suml=sum; Carry out recurrence for odd terms.
sum += y[il;
y[i]l=sumi;
} else if (isign == -1) { Inverse transform.
ytemp=y [n] ;
for (i=n;i>=4;i-=2) yl[il=y[i-2]-y[i]; Form difference of odd terms.
y[2]=2.0%ytemp;
for (i=3;i<=n;i+=2) { Calculate Ry and I.
wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
yl=y[il*wr+y [i+1]*wi;
y2=y [i+1]*wr-y [i]*wi;
y[il=y1;
yli+1]l=y2;
}
realft(y,n,-1);
for (i=1;i<=n/2;i++) { Invert auxiliary array.

yl=y[il+y[n-i+1];
y2=(0.5/wil)*(y[i]-y[n-i+1]1);
y[i1=0.5%(y1+y2);
y[n-i+1]=0.5%(y1-y2);
wri=(wtemp=wrl)*wpr-wil*wpi+wri;
wil=wil*wpr+wtemp*wpi+wil;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

12.4 FFT in Two or More Dimensions 521

An aternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of f; into the first V/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small NV that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed NV of small dimension [1].

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10-10.

Sorensen, H.V,, Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849-863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455-1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).
Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314-329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004-1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(kq, k2) defined over the two-dimensiona grid
0<k <N;—1,0<ky <Ny —1,wecan define its two-dimensional discrete
Fourier transform as a complex function H(n 1, n2), defined over the same grid,

Nz;—1N;—1

H(nl,ng) = Z Z exp(27rik2n2/N2) exp(2m'k1n1/N1) h(kl, k2)
ko=0 k1=0
(12.4.1)

By pulling the “ subscripts 2" exponential outside of the sum over & 1, or by reversing
the order of summation and pulling the “subscripts 1" outside of the sum over & 5,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(ny,n9) = FFT-on-index-1(FFT-on-index-2[h(k 1, k2)])

.) (12.4.2)
= FFT-on-index-2 (FFT-on-index-1[h(k 1, k2)])

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

